Pedro Cavaleiro Miranda
Biografia
Pedro Cavaleiro Miranda obteve o doutoramento em Física na Universidade de Sussex, Reino Unido e tem um mestrado em Ciência da Computação pelo University College London, Reino Unido. É professor associado com agregação na Faculdade de Ciências da Universidade de Lisboa, onde ensina no Mestrado Integrado em Engenharia Biomédica e Biofísica. Desenvolve a sua atividade de investigação no Instituto de Biofísica e Engenharia Biomédica (IBEB), na mesma Universidade. A sua principal atividade de investigação consiste no cálculo do campo elétrico induzido por técnicas de estimulação neuronal não invasivas, como, por exemplo, a TMS e a tDCS, com base em modelos realistas do cérebro e da medula espinhal humanos. O objetivo final deste trabalho é fazer uma previsão individualizada do resultado final da estimulação neuronal não invasiva, recorrendo a modelos multi-escala que incluem informação acerca de neurónios e redes neuronais. Está também envolvido na modelação da aplicação não-invasiva de campos elétricos para o tratamento de tumore cerebrais (TTFields), com o objetivo de otimizar os protocolos de tratamento. O seu grupo trabalha em colaboração com parceiros nacionais e internacionais e com duas empresas de dispositivos médicos.
Publicações
Publicações em revistas
(2023) The Impact of Scalp's Temperature on the Choice of the Best Layout for TTFields Treatment, Irbm 44(3), p. 100768, Elsevier Masson, doi:10.1016/j.irbm.2023.100768
(2022) TH-183. Relevance of realistic human models to guide non-invasive spinal stimulation: A review of current findings, Clinical Neurophysiology 141, p. S139, Elsevier, doi:10.1016/j.clinph.2022.07.363
(2022) Author Correction: How to correctly estimate the electric field in capacitively coupled systems for tissue engineering: a comparative study (Scientific Reports, (2022), 12, 1, (11049), 10.1038/s41598-022-14834-2), Scientific Reports 12(1), p. 11049, Nature Publishing Group UK London, doi:10.1038/s41598-022-16724-z
(2022) Temperature and Impedance Variations During Tumor Treating Fields (TTFields) Treatment, Frontiers in Human Neuroscience 16, p. 436, Frontiers, doi:10.3389/fnhum.2022.931818
(2022) Lumbar trans-spinal direct current stimulation: A modeling-experimental approach to dorsal root ganglia stimulation, Frontiers in Neuroscience 16, p. 1041932, Frontiers, doi:10.3389/fnins.2022.1041932
(2022) Author Correction: How to correctly estimate the electric field in capacitively coupled systems for tissue engineering: a comparative study (Scientific Reports, (2022), 12, 1, (11049), 10.1038/s41598-022-14834-2), Scientific Reports 12(1), Nature Publishing Group, doi:10.1038/s41598-022-16724-z
(2021) A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation, Journal of Neural Engineering 18(4), p. 46024, IOP Publishing, doi:10.1088/1741-2552/abeab7
(2021) Neuromodulation of lower limb motor pathways with trans-spinal direct current stimulation: an overview of current findings, Annals of Medicine 53(sup1), p. S32-S32, Taylor & Francis, doi:10.1080/07853890.2021.1896902
() HIVE: Hyper Interaction Viability Experiments EU FP7 FET OPEN-222079, Wiki.Neuroelectrics.Com, pdf
(2020) A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation, Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative 2020, p. 81-99, doi:10.1007/978-3-030-45623-8_5
(2020) Abstract 5484: Influence of the thermal and electric properties of biological tissues on the maximum temperature during TTFields therapy, Cancer Research 80(16_Supplement), p. 5484-5484, The American Association for Cancer Research, doi:10.1158/1538-7445.am2020-5484
(2020) The Impact of the Electric Conductivity of Tissues on the Electric Field Intensity and Power Density during TTFields Therapy for Glioblastoma, International Journal of Radiation Oncology*Biology*Physics 108(3), p. e299, Elsevier, doi:10.1016/j.ijrobp.2020.07.715
(2020) A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy, Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative, p. 37-62, doi:10.1007/978-3-030-45623-8_3
(2020) Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution, Computer Methods and Programs in Biomedicine 196, p. 105706, Elsevier, doi:10.1016/j.cmpb.2020.105706
(2020) Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord, Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative, p. 139-165, doi:10.1007/978-3-030-45623-8_8
(2019) Temperature control in TTFields therapy of GBM: Impact on the duty cycle and tissue temperature, Physics in Medicine and Biology 64(22), p. 225008, IOP Publishing, doi:10.1088/1361-6560/ab5323
(2019) Role of computational modeling for dose determination, Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications, p. 233-262, Springer International Publishing, doi:10.1007/978-3-319-95948-1_9
(2019) Principles of transcranial direct current stimulation (tDCS): Introduction to the biophysics of tDCS, Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications, p. 45-80, Springer International Publishing, doi:10.1007/978-3-319-95948-1_2
(2019) Cervical trans-spinal direct current stimulation: A modelling-experimental approach, Journal of Neuroengineering and Rehabilitation 16(1), p. 1-14, BioMed Central
(2018) Realistic modeling of transcranial current stimulation: The electric field in the brain, Current Opinion in Biomedical Engineering 8, p. 20-27, Elsevier, doi:10.1016/j.cobme.2018.09.002
() SOFIA R. FERNANDES1, 2, RICARDO SALVADOR1, CORNELIA WENGER1
(2018) A Review on Tumor-Treating Fields (TTFields): Clinical Implications Inferred from Computational Modeling, IEEE Reviews in Biomedical Engineering 11, p. 195-207, IEEE, doi:10.1109/RBME.2017.2765282
(2018) Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: A modelling study, Journal of Neural Engineering 15(3), p. 36008, IOP Publishing, doi:10.1088/1741-2552/aaac38
(2018) BIAL Foundation, The Grants Register 2018, p. 159-160, Instituto de Biof{\'\i}sica e Engenharia Biomédica, Faculdade de Ciências da~…, url, doi:10.1007/978-1-349-94186-5_204
(2018) Neuromodulation of lower limb motor responses with transcutaneous lumbar spinal cord direct current stimulation, Clinical Neurophysiology 129(9), p. 1999-2009, Elsevier, doi:10.1016/j.clinph.2018.07.002
(2018) Neuromodulation of lower limb motor responses with transcutaneous lumbar spinal cord direct current stimulation, Clinical Neurophysiology 129(9), p. 1999-2009, Elsevier, doi:10.1016/j.clinph.2018.07.002
(2018) PB16. Prefrontal bipolar versus multichannel tDCS: Impact on working memory performance, Clinical Neurophysiology 129(8), p. e62, Elsevier, doi:10.1016/j.clinph.2018.04.641
() SPECIAL SECTION ON NONINVASIVE ELECTROMAGNETIC BRAIN STIMULATION
(2018) Seleção recorrente em mamoeiro: obtenção, avaliação e seleção de indiv{\'\i}duos da população base UCP-C0, VII Simpósio do Papaya Brasileiro, p. pp--1, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural
(2017) Abstract 4536: Using diffusion weighted imaging (DWI) data to accurately predict electric field delivery to the tumor during TTFields treatment, Cancer Research 77(13_Supplement), p. 4536-4536, The American Association for Cancer Research, doi:10.1158/1538-7445.am2017-4536
(2017) Personalized tDCS stimulation parameters for pediatric subjects, Brain Stimulation 10(2), p. 525, Elsevier, doi:10.1016/j.brs.2017.01.534
(2017) P084 Electric field distribution in the lumbar spinal cord during trans-spinal magnetic stimulation, Clinical Neurophysiology 128(3), p. e48-e50, Elsevier, doi:10.1016/j.clinph.2016.10.209
(2017) Influence of electrode configuration in neuromodulation of cervical spinal cord during non-invasive direct current stimulation, Brain Stimulation 10(2), p. 458, Elsevier, doi:10.1016/j.brs.2017.01.345
(2017) Effects of tissue conductivities in tCS of the motor cortex with different electrode configurations, Brain Stimulation 10(2), p. 438, Elsevier, doi:10.1016/j.brs.2017.01.306
(2017) Optimizing Electric-Field Delivery for tDCS: Virtual Humans Help to Design Efficient, Noninvasive Brain and Spinal Cord Electrical Stimulation, IEEE Pulse 8(4), p. 42-45, IEEE, doi:10.1109/MPUL.2017.2701259
(2017) T019 models of neuronal response to suprathreshold electric fields, Clinical Neurophysiology 128(3), p. e6, Elsevier, doi:10.1016/j.clinph.2016.10.118
(2017) Modeling, targeting and optimizing multichannel transcranial current stimulation (tCS), Brain Stimulation 10(2), p. 466-467, Elsevier, doi:10.1016/j.brs.2017.01.369
(2017) Tetrahedral vs hexahedral meshes in tCS realistic head modeling, Brain Stimulation 10(2), p. 436-437, Elsevier, doi:10.1016/j.brs.2017.01.301
(2017) Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines, Clinical Neurophysiology 128(9), p. 1774-1809, Elsevier, doi:10.1016/j.clinph.2017.06.001
(2016) Quantifying the Effect of Electric Fields in the Frequency Range of 100-500 khz on Mitotic Spindle Structures, Biophysical Journal 110(3), p. 619a, Elsevier, doi:10.1016/j.bpj.2015.11.3321
(2016) The frequency-dependent neuronal length constant in transcranial magnetic stimulation, Frontiers in Cellular Neuroscience 10(AUG), p. 194, Frontiers Media SA, doi:10.3389/fncel.2016.00194
(2016) Improving Tumor Treating Fields Treatment Efficacy in Patients with Glioblastoma Using Personalized Array Layouts, International Journal of Radiation Oncology Biology Physics 94(5), p. 1137-1143, Elsevier, doi:10.1016/j.ijrobp.2015.11.042
() Accurate representation of the cortical surface in modeling the human head as a volume conductor
(2016) Opportunities for guided multichannel non-invasive transcranial current stimulation in poststroke rehabilitation, Frontiers in Neurology 7(FEB), p. 21, Frontiers Media SA, doi:10.3389/fneur.2016.00021
(2016) Modélisation de la tDCS, Neurophysiologie Clinique/Clinical Neurophysiology 46(3), p. 228, Elsevier Masson, doi:10.1016/j.neucli.2016.06.027
(2016) Biophysical Effects of Tumor Treating Fields, Alternating Electric Fields Therapy in Oncology, p. 29-39, Springer International Publishing, doi:10.1007/978-3-319-30576-9_3
(2016) Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES), Brain Stimulation 9(4), p. 525-528, Elsevier, doi:10.1016/j.brs.2016.03.001
(2016) A technical guide to tDCS, and related non-invasive brain stimulation tools, Clinical Neurophysiology 127(2), p. 1031-1048, Elsevier, doi:10.1016/j.clinph.2015.11.012
(2016) Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES), Brain Stimulation 9(4), p. 525-528, doi:10.1016/j.brs.2016.03.001
(2015) Investigating the cortical regions involved in MEP modulation in tDCS, Frontiers in Cellular Neuroscience 9(OCT), p. 405, Frontiers Media SA, doi:10.3389/fncel.2015.00405
(2015) Mtr-20Increasing Tumor Treating Fields (Ttfields) Efficacy in Gbm Patients Through Optimization of Transducer Array Configuration, Neuro-Oncology 17(suppl 5), p. v128.4-v128, Oxford University Press, doi:10.1093/neuonc/nov219.20
(2015) The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: A computational study, Physics in Medicine and Biology 60(18), p. 7339-7357, IOP Publishing, doi:10.1088/0031-9155/60/18/7339
(2015) Modeling Intersubject Differences in Tumor Treating Fields (TTFields) Treatment of GBM Patients, International Journal of Radiation Oncology*Biology*Physics 93(3), p. E71, Elsevier, doi:10.1016/j.ijrobp.2015.07.724
(2015) Optimizing the Delivery of TTfields to the Lungs by Personalizing Transducer Array Layouts on the Torso, International Journal of Radiation Oncology*Biology*Physics 93(3), p. E410, Elsevier, doi:10.1016/j.ijrobp.2015.07.1592
(2014) P270: Short-term effect of different tDCS intensities on motor cortex excitability, Clinical Neurophysiology 125(1), p. S121, Elsevier, doi:10.1016/s1388-2457(14)50391-4
(2014) P279: Effects of increasing the number of return electrodes in tCS, Clinical Neurophysiology 125(125), p. S222, doi:10.1016/s1388-2457(14)50729-8
(2014) Tm-16 * Investigating the Mechanisms of Action of Tumor Treating Fields: a Computational Modeling Study, Neuro-Oncology 16(suppl 5), p. v216-v216, Oxford University Press, doi:10.1093/neuonc/nou278.15
(2014) P17.23 * Alternating Electric Fields (Ttfields) for Treating Glioblastomas: a Modelling Study on Efficacy, Neuro-Oncology 16(suppl 2), p. ii92-ii92, Oxford University Press, doi:10.1093/neuonc/nou174.353
(2014) Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields, NeuroImage 89, p. 216-225, Academic Press, doi:10.1016/j.neuroimage.2013.12.002
(2014) P270: Short-term effect of different tDCS intensities on motor cortex excitability, Clinical Neurophysiology 125(125), p. S121, doi:10.1016/s1388-2457(14)50391-4
(2014) Predicting the electric field distribution in the brain for the treatment of glioblastoma, Physics in Medicine and Biology 59(15), p. 4137-4147, IOP Publishing, doi:10.1088/0031-9155/59/15/4137
(2014) Tm-16 * Investigating the Mechanisms of Action of Tumor Treating Fields: a Computational Modeling Study, Neuro-Oncology 16(suppl 5), p. v216-v216, doi:10.1093/neuonc/nou278.15
(2013) The electric field in the cortex during transcranial current stimulation, NeuroImage 70, p. 48-58, Academic Press, doi:10.1016/j.neuroimage.2012.12.034
(2013) IS 1. The electric field in the brain during tDCS, Clinical Neurophysiology 124(10), p. e39, Elsevier, doi:10.1016/j.clinph.2013.04.020
(2013) From Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and Physiological Modeling Study, PLoS ONE 8(2), p. e57330, Public Library of Science, doi:10.1371/journal.pone.0057330
(2013) Transcranial current brain stimulation (tCS): Models and technologies, IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(3), p. 333-345, IEEE, doi:10.1109/TNSRE.2012.2200046
(2013) Physics of effects of transcranial brain stimulation, Handbook of Clinical Neurology 116, p. 353-366, Elsevier, doi:10.1016/B978-0-444-53497-2.00029-2
(2013) Transcranial alternating current stimulation reduces symptoms in intractable idiopathic cervical dystonia: A case study, Neuroscience Letters 533(1), p. 39-43, Elsevier, doi:10.1016/j.neulet.2012.11.007
(2012) Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits, Proceedings of the National Academy of Sciences of the United States of America 109(17), p. 6710-6715, National Academy of Sciences, doi:10.1073/pnas.1121147109
(2012) Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices, Brain Stimulation 5(4), p. 435-453, Elsevier, doi:10.1016/j.brs.2011.10.001
(2011) A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS, Journal of Neural Engineering 8(6), p. 66017, IOP Publishing, doi:10.1088/1741-2560/8/6/066017
(2011) S13.4 Effect of electrode size on focality of transcranial current stimulation: a modeling study using realistic electrode and head models, Clinical Neurophysiology 122(122), p. S34, doi:10.1016/s1388-2457(11)60110-7
() 2 Section on Tissue Biophysics and Biomimetics, NICHD, NIH, Bethesda, MD 20892
(2011) Determining which mechanisms lead to activation in the motor cortex: A modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry, Clinical Neurophysiology 122(4), p. 748-758, Elsevier, doi:10.1016/j.clinph.2010.09.022
(2011) PTMS27 Simulation of scalp EEG signals under tDCS, Clinical Neurophysiology 122(122), p. S188, doi:10.1016/s1388-2457(11)60680-9
(2010) Comment on: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research, by Rossi et al. (2009), Clinical Neurophysiology 121(6), p. 980, Elsevier, doi:10.1016/j.clinph.2010.04.001
(2009) What does the ratio of injected current to electrode area not tell us about tDCS?, Clinical Neurophysiology 120(6), p. 1037-1038, Elsevier, doi:10.1016/j.clinph.2009.04.004
(2009) What does the ratio of injected current to electrode area not tell us about tDCS?, Clinical Neurophysiology 120(6), p. 1037-1038, Elsevier, doi:10.1016/j.clinph.2009.04.004
(2009) High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation, Physics in Medicine and Biology 54(10), p. 3113-3128, IOP Publishing, doi:10.1088/0031-9155/54/10/010
(2008) A simulation study of the mechanisms that govern direct activation of neurons in the motor cortex by transcranial magnetic stimulation, Brain Stimulation 1(3), p. 251-252, Elsevier, doi:10.1016/j.brs.2008.06.072
(2008) Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus, Clinical Neurophysiology 119(10), p. 2405-2413, Elsevier, doi:10.1016/j.clinph.2008.07.248
(2008) Literature Browser for Prof. Carlo Miniussi, Brain Stimulation 1(2)
(2007) Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields, Physics in Medicine and Biology 52(18), p. 5603-5617, IOP Publishing, doi:10.1088/0031-9155/52/18/009
(2006) Modeling the current distribution during transcranial direct current stimulation, Clinical Neurophysiology 117(7), p. 1623-1629, Elsevier, doi:10.1016/j.clinph.2006.04.009
(2005) Transcranial magnetic stimulation system and methods, url
(2003) The electric field induced in the brain by magnetic stimulation: A 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy, IEEE Transactions on Biomedical Engineering 50(9), p. 1074-1085, IEEE, doi:10.1109/TBME.2003.816079
(2000) Neurophysiological features of fasciculation potentials evoked by transcranial magnetic stimulation in amyotrophic lateral sclerosis, Journal of Neurology 247(3), p. 189-194, Steinkopff Verlag, doi:10.1007/s004150050561
(1999) Cortical muscle representation in amyotrophic lateral sclerosis patients: Changes with disease evolution, Muscle and Nerve 22(12), p. 1684-1692, John Wiley & Sons, Inc. New York, doi:10.1002/(SICI)1097-4598(199912)22:12<1684::AID-MUS10>3.0.CO;2-X
(1999) Mapping central motor changes in ALS patients using TMS, NeuroImage 9(6 PART II), p. S687--S687, ACADEMIC PRESS
(1999) Reproducibility of corticomotor threshold: Some observations [1] (multiple letters), Muscle and Nerve 22(4), p. 538-539, John Wiley & Sons, Inc. New York, doi:10.1002/(SICI)1097-4598(199904)22:4<538::AID-MUS18>3.0.CO;2-O
(1999) Influence of learning to read and write on the morphology of the corpus callosum, European Journal of Neurology 6(1), p. 23-28, Blackwell Science Ltd Oxford, UK, doi:10.1046/j.1468-1331.1999.610023.x
(1998) Study of Color, Luminance and Contrast Effects on Brain Evoked Activity By Magnetoencephalograpy, NeuroImage 7(4), p. S314, Academic Press, doi:10.1016/s1053-8119(18)31147-9
(1997) A new method for reproducible coil positioning in transcranial magnetic stimulation mapping, Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control 105(2), p. 116-123, Elsevier, doi:10.1016/S0924-980X(97)95720-9
(1997) Magnetic stimulation in Alzheimer’s disease, Journal of neurology 244, p. 304-307, Springer-Verlag
(1996) P439 The effect of coil orientation on the reliability of magnetic stimulation mapping of the human motor cortex, Electroencephalography and Clinical Neurophysiology 99(4), p. 377, doi:10.1016/0013-4694(96)88614-7
(1996) A calculation and experimental verification of the infrared transmission coefficient of straight cylindrical metal tubes, Journal of Heat Transfer 118(2), p. 495-497, doi:10.1115/1.2825876
(1996) 31P-Magnetic resonance spectroscopy studies of nucleated and non-nucleated erythrocytes; time domain data analysis (VARPRO) incorporating prior knowledge can give information on the binding of ADP, Biochimica et Biophysica Acta - General Subjects 1291(2), p. 143-148, Elsevier, doi:10.1016/0304-4165(96)00058-X
(1996) P439 The effect of coil orientation on the reliability of magnetic stimulation mapping of the human motor cortex, Electroencephalography and Clinical Neurophysiology 99(4), p. 377, Elsevier, doi:10.1016/0013-4694(96)88614-7
(1988) Ultra-cold neutron transmission of clear and metal-coated polypropylene windows, Journal of Physics D: Applied Physics 21(9), p. 1326-1335, IOP Publishing, doi:10.1088/0022-3727/21/9/003
(1985) Current searches for the electric dipole moment of the neutron, Flavour mixing and CP violation, p. 233
(1967) Search for a neutron electric dipole moment by a scattering experiment, Physical Review Letters 19(7), p. 384-386, North-Holland, doi:10.1103/PhysRevLett.19.384
Publicações em conferências
(2023) Interplay Between Electrical Conductivity of Tissues and Position of Electrodes in Transcutaneous Spinal Direct Current Stimulation (tsDCS), Brain and Human Body Modelling 2021, p. 101-122, doi:10.1007/978-3-031-15451-5_7
(2023) The Impact of Scalp’s Temperature in the Predicted LMiPD in the Tumor During TTFields Treatment for Glioblastoma Multiforme, Brain and Human Body Modelling 2021, p. 3-18, doi:10.1007/978-3-031-15451-5_1
(2022) How the Number and Distance of Electrodes Change the Induced Electric Field in the Cortex during Multichannel tDCS, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2022-July, p. 2357-2360, doi:10.1109/EMBC48229.2022.9871114
(2021) A computational study of the relation between the power density in the tumor and the maximum temperature in the scalp during Tumor Treating Fields (TTFields) therapy, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2021-Janua, p. 4192-4195, doi:10.1109/EMBC46164.2021.9630071
(2021) Continuous versus Intermittent Application of Electric Fields during TTFields for Glioblastoma Treatment, Pan American Health Care Exchanges, PAHCE 2021-May, p. 1-4, doi:10.1109/GMEPE/PAHCE50215.2021.9434835
(2021) Effects of Scaffold Electrical Properties on Electric Field Delivery in Bioreactors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 4147-4151, doi:10.1109/EMBC46164.2021.9630711
(2020) The impact of the uncertainty of biological tissue thermal parameters on the estimated maximum temperature during TTFields treatment, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2020-July, p. 2283-2286, doi:10.1109/EMBC44109.2020.9175372
(2020) Non-invasive Spinal Cord Stimulation: Relevance of Modelling Studies in Clinical Protocol Design, IFMBE Proceedings 76, p. 1767-1773, doi:10.1007/978-3-030-31635-8_214
(2019) Electric Field Distribution during Non-Invasive Electric and Magnetic Stimulation of the Cervical Spinal Cord∗, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5898-5901, doi:10.1109/EMBC.2019.8857129
(2019) A Computational Analysis of the Electric Field Components in Transcranial Direct Current Stimulation, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5913-5917, doi:10.1109/EMBC.2019.8857382
(2019) Abstract 689: Heating of head tissues during TTFields therapy: A computational study, p. 689-689, doi:10.1158/1538-7445.sabcs18-689
(2016) Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 1778-1781, doi:10.1109/EMBC.2016.7591062
(2016) Using computational phantoms to improve delivery of Tumor Treating Fields (TTFields) to patients, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 6461-6464, doi:10.1109/EMBC.2016.7592208
(2016) Computational models of non-invasive brain and spinal cord stimulation, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 6457-6460, doi:10.1109/EMBC.2016.7592207
(2016) Investigating an alternative ring design of transducer arrays for tumor treating fields (TTFields), Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 5168-5171, doi:10.1109/EMBC.2016.7591891
(2016) Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 3121-3124, doi:10.1109/EMBC.2016.7591390
(2016) Effects of prefrontal anodal transcranial direct current stimulation on working-memory and reaction time, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 1790-1793, doi:10.1109/EMBC.2016.7591065
(2016) Simplified realistic human head model for simulating Tumor Treating Fields (TTFields), Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 5664-5667, doi:10.1109/EMBC.2016.7592012
(2016) Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-Octob, p. 3121-3124, doi:10.1109/EMBC.2016.7591390
(2015) How electrode montage affects transcranial direct current stimulation of the human motor cortex, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem, p. 6924-6927, doi:10.1109/EMBC.2015.7319985
(2015) Modeling Tumor Treating fields (TTFields) application within a realistic human head model, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem, p. 2555-2558, doi:10.1109/EMBC.2015.7318913
(2015) Transcutaneous Spinal Direct Current Stimulation : Modelling the Electric Field Distribution in the Cervical Spinal Cord, 3rd International Congress on Neurotechnology Electronics and Informatics – Neurotechnix 2015, Lisboa, Portugal, 2015. 1, p. a
(2015) Modelling Tumor Treating Fields for the treatment of lung-based tumors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem, p. 6888-6891, doi:10.1109/EMBC.2015.7319976
(2015) Shielding the magnetic field from a transcranial stimulator using aluminium and iron: Simulation and experimental results, 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), p. 1-2, doi:10.1109/enbeng.2015.7088824
(2015) Modeling Tumor Treating Fields (TTFields) application in single cells during metaphase and telophase, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem, p. 6892-6895, doi:10.1109/EMBC.2015.7319977
(2014) Predicting the electric field distribution in the brain for the treatment of glioblastoma, Physics in Medicine and Biology 59(15), p. 4137-4147, doi:10.1088/0031-9155/59/15/4137
(2014) Optimization of multiple coils immersed in a conducting liquid for half-hemisphere or whole-brain deep transcranial magnetic stimulation: A simulation study, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, p. 538-541, doi:10.1109/EMBC.2014.6943647
(2013) Experimental demonstration of induction by means of a transcranial magnetic stimulator coil immersed in a conducting liquid, 3rd Portuguese Bioengineering Meeting, ENBENG 2013 - Book of Proceedings, p. 1-4, doi:10.1109/ENBENG.2013.6518402
(2013) TM-028. Electric fields for the treatment of glioblastomas: a modeling study, Neuro-Oncolgy 15(suppl3), p. iii235-iii241
(2012) Effects of tissue dielectric properties on the electric field induced in tDCS: A sensitivity analysis, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 787-790, doi:10.1109/EMBC.2012.6346049
(2012) The relationship between transcranial Current Stimulation electrode montages and the effect of the skull orbital openings, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 831-834, doi:10.1109/EMBC.2012.6346060
(2010) Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 2073-2076, doi:10.1109/IEMBS.2010.5626315
(2009) Comparing different electrode configurations using the 10-10 international system in tDCS: A finite element model analysis, Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, p. 1596-1599, doi:10.1109/IEMBS.2009.5334121
(2009) Transcranial magnetic stimulation of small animals: A modeling study of the influence of coil geometry, size and orientation, Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, p. 674-677, doi:10.1109/IEMBS.2009.5334070
(2007) High-permeability core coils for transcranial magnetic stimulation of deep brain regions., Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, p. 6653-6656
(2007) The activation function of TMS on a finite element model of a cortical sulcus., Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, p. 6657-6660
(2007) The role of tissue heterogeneity in neural stimulation by applied electric fields, Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, p. 1715-1718, doi:10.1109/IEMBS.2007.4352640
(2001) The distribution of currents induced in the brain by Magnetic Stimulation : a finite element analysis incorporating DT-MRI-derived conductivity data, Proceedings of the International Society for Magnetic Resonance in Medicine 9, p. 2001
Capítulos de livros
(2022) Tumour treating fields: therapy preclinical and clinical data, Handbook of Neuro-Oncology Neuroimaging, p. 269-283, Academic Press
(2021) Basic Electromagnetism, Springer Series in Solid-State Sciences 195, p. 11-28, Butterworth-Heinemann, doi:10.1007/978-3-030-67568-4_2
(2016) TTFields Therapy: Preclinical and Clinical Data, Handbook of Neuro-Oncology Neuroimaging: Second Edition, p. 243-256, Academic Press, doi:10.1016/B978-0-12-800945-1.00025-2